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(Received 16 August 1968) 

Many of the known analytic solutions of the equation for neutral disturbances 
to a stably stratified, inviscid, parallel shear flow are shown to belong to a wider 
family of solutions when a transformation to the hypergeometric differential 
equation is possible. Two particular cases in which the transformation can be 
made are examined in some detail and the solutions are expressed in a simple 
analytical form. A number of novel solutions are presented as examples. 

1. Introduction 
The stability equation for infinitesimal disturbances to the flow of an inviscid, 

incompressible, stably stratified fluid of density p(z) moving with velocity 
( U (z) ,  0,  0) ,  when the Boussinesq approximation is made, is 

(see, for example, Drazin & Howard 1966, equation 3.12), where x is measured 
vertically upwards, the stream function @ = $(z)  exp {ia(x - ct)} ,  a is the wave- 
number, c = cr+ici  is the (complex) phase speed, and N is the Brunt-Viiisiila 
frequency (so that N 2  = -g(dp/dz)/p). The equation has been non-dimensional- 
ized with respect to an intrinsic length scale L and velocity scale U,. It is regret- 
table that this frequently used equation has no name. It seems appropriate to 
call it  the Taylor-Goldstein equation, in recognition of its first use by Taylor 
(1931) and Goldstein (1931) in the determination of the stability of certain 
stratified flows, and we shall use this name in this paper. In  a number of cases 
for which an analytic solution can be found, it has been shown that the eigen- 
values corresponding to the neutral eigensolutions, the solutions of (1) with 
ci = 0, subject to certain boundary conditions at  z = x1 and z2, form a stability 
boundary J = Jo(a), where J, is a characteristic value of the Richardson number 
J ( = N 2 / V 2 ) .  If a neutral eigensolution can be found, it is frequently possible 
to test whether or not it lies on a stability boundary by computing (ac/aJ), as 
described by Howard (1963). Recent experiments continuing those described by 
Thorpe (1968a) have shown that the linear stability analysis predicts quite 
well the features of the onset of instability. It is therefore of interest to find the 
neutral eigensolutions of (1). 
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A number of the known analytic neutral solutions of (1) have recently been 
listed by Drazin & Howard (1966) and it appears that in almost every case the 
eigensolutions may be immediately deduced if a transformation of (1) into the 
hypergeometric differential equation is possible. It is therefore worth while to 
examine the general conditions for which (1) may be transformed into the hyper- 
geometric equation, and this is considered in $2. As a result we shall show that, 
in certain cases, a continuum of neutral solutions of (1) may be determined by 
the inverse method of suitably transforming the equation to a hypergeometric 
differential equation and then determining the forms of U ( z )  and p(z) which 
lead to solutions of the latter equation. It is found that many of the known 
analytic solutions belong to families of more general solutions which are described 
in $3.  Further sets of analytic solutions have been discovered for particular 
cases which may be useful for comparison with experiments or to illustrate or 
refute conjectures about the stability of stratified flows. 

2. The transformation 
The Taylor-Goldstein equation, (l), may be written 

where 

We shall suppose that the phase speed, c,  and therefore h(z) ,  is real, so that the 
solution corresponds to a neutral eigensolution. We shall specify the functions 
N 2  and ( U -  c) in the examples taken later and it has not, in general, been found 
possible to vary c and U independently. This restriction in the choice of c is a 
limitation of the method. 

The hypergeometric equation is 

w(1- w)- d2f + [m-  (it+ z +  l)w] - df  -klf = 0, 
dW2 dw (4) 

where k, I ,  m are constants, and Kummer's 24 solutions are listed by Erdelyi 
(1953) and Abramowitz & Stegun (1965, p. 563). We examine the circumstances 
in which (2) transforms into (4) together with a transformation of boundary 

(5) conditions, when $ = f (w) w q  1 - w)*, 
with w = g(z). 

Substitution of (5) and (6) yields the equation 

g'2wP-l(l- w)*--1 (w( 1 - w) __ d2f + [w( 1 - w) -+ g" 2p( 1 - w) - 2qw]- df  
dw2 gf2 dw 

l - w  W 
2Pq 

9" 9" + p(l - w)- -qw -+p(p - 1) ~ +q(q-- 1) __ - [ d2 St2 W l - w  

+w-h(z) f = 0, 
l -w gt2 1 I (7) 
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gr = -, etc. 
dz 
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Equation (7) is satisfied if the expression within the curly brackets is zero. 
The terms in this expression have the same form as corresponding terms on the 
left-hand side of (4) if 

(8) 
9 ~ ( 1 -  W )  -+-2p(l- W )  - 2qw = m- ( k +  I +  1 )  w 
gf2 

1-w W 
2Pp. 

9” grr 
912 9v4 W 1-w and p ( 1 -  w)  --qw-+p(p- 1) __ + q ( q -  1) -- 

+-h w(1-w)  = -kl .  (9) 
gr2 

Equation (8), with w = g(z) ,  is an equation for the function g, and (9), with this 
function g substituted, is then an equation which must be satisfied by h(z). If 
h(z) has this required form then the solutions of (2 )  are related to the solutions 
of the hypergeometric differential equation (4) by ( 5 ) .  The choices made for p 
and q are determined by the eigenvalues of ( 5 )  since they are related to the 
constants k, I, and m. 

Equation (8) may be written 

where A = 2(j9++)-(k+Z+1), B = m-2p,  (11) 
and this may be integrated once to give 

g‘ = CgB/(  1 - g)‘A+B’, 

where C is a constant. A further integration gives 

Substitution from (8) and (12) into (9) gives the equation for h(z), 

+ 4(1 - @g2 + ( 4 7  + B)  rag -P(1 -9)ll. (13) 
There seems little advantage in carrying the general analysis further, and we 

shall now continue by choosing particular solutions of (10). 

3. Particular forms of solution 
3.1. Hyperbolic functions 

Equation (10) is satisfied when g = cosh2z, if A = - 1, B = Q, and (12) is satis- 
fied if, in addition, C = 2i, and h then has the form 

+R,, (14) Pl Qi 
cosh2 z sinh2 z 

h(z) = -+- 
43-2 
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where P, = 2p(2p-l) ,  Q1 = -2q(2q-1), and R, = 4[kZ-(p+q)2]. (15) 

(Equation (14) is the functional form of h(z)  which is assumed by (1) when U = 0 
and N 2  cc sech2z, that is for progressive gravity waves in a fluid with density 
p = poexp (-ptanhz) and this was studied by Groen (1948). Groen used the 
transformation into the hypergeometric equation in finding solutions; see also 
Thorpe (1968b).) 

The constants P,, Q1 and R,, which appear in (14), are related to the physical 
parameters of the problem by (3). Indeed, when the right-hand side of (3) is 
equated to that of (14) it is seen that there are related sets of N2,  a and U - c, 
for the particular values of P,, Q1 and R, for which a solution is possible. If U -  c 
is specified, then the possible forms of N2 which satisfy the equation are specified. 
We must now consider the restraints on P,, Q1 and R, imposed by the possibility 
of finding a solution. 

From (15) p = ;[I k d(1 +4p1)], = p' say , 
q =  $[1*&-44?,)], = q *  say 2 

and kl= t[R,+4(1,+q)*l, 

and k+Z = 2(p+p).  

whilst from (1 1) m = $+2p,  

From this set of equations it may be shown that k or I is equal to 

P + q  * :d( - Rd9 

and without loss of generality we suppose that 

k = p + q + + 1 / ( - R l )  and I = p + q - i d ( - R , ) .  

We shall here pose the problem for an infinite fluid and require that 9 tends to 
zero as z tends to f co, that is as w tends to infinity. The general solution for f in 
the neighbourhood of the singular point at  infinity is 

f(w) = D,w-kF(k ,k-m+l ;k- I+  1; l /w)+D,w-zF(Z,Z-m+l;Z-k+l;  l/w), 
(21) 

where Do and D, are arbitrary constants and F is the hypergeometric series. 
The solution for q5 is now found by substituting from (5) : 

9 = D, w-~~(-R1)(1-[1/w])~F(k,k-m+ 1;  k-Z+ 1;  l /w) 

+ D,wW-RJ(l- [l/w])QF(Z, I -m  + 1; I -  k+ 1; llw), (22) 

where D, and D, are constants. Since F(k, ,  8,; m,; z )  + 1 as z+ O+ for all k,, I,, 
m,, it follows that 9 is bounded as w -+ co only if D, = 0, and 9 then tends to 
zero at  infinity as required. Hence the solution is 

9 = D,w-b'(-Ri)( 1 - [ l/w])QF (k, k - m + 1 ; k - I + 1; l/w). (23) 
Now (23) represents the solution over only half the required range, either for 

z > 0 or z < 0, and we must ensure continuity in 9 and dq3/dz across z = 0. This 
is done by demanding that either 9 = 0 at z = 0 or that d#/dz = 0 and 9 bounded 
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and non-zero at  z = 0. In  the f i s t  case (4 = 0)  continuity is ensured by taking 
values of D, of equal magnitude but opposite sign on opposite sides of z = 0, and 
in the second case (d$/dz = 0 )  continuity is ensured by taking the same values 
of D, on either side of z = 0. 

We shall use the following limits in establishing the conditions in which 
continuity is ensured: 

If x = (1  - s ) b F  (k,, 1,; m,; x) where 2n = 2(k ,  + I, - m,) + 1, then, as x - f  1 - , 
X-+@ if a(%) < 0 or 9 ( n )  > 1, 

and 

x + O  if 0 < @ ( n )  < 1, 

(24) 

These results may easily be deduced by the methods used by Whittaker & 
Watson (1952; $14.11, and p. 297, example 8). If 9(Z) = 0 or 1, x will tend to 
zero only if the one of the gamma functions appearing in the denominations of 
the expressions for x becomes infinite, that is when the argument of the gamma 
function is equal to a negative integer or zero. 

Case 1.  q5 = 0 at z = 0. If we write k, = k, Z, = k-m+ 1, rn, = k-Z+ 1, and 
use the relations (19), (20) we find 

2(k,+Zl-m,)+1 = 2(k+Z-m)+1 = 4q. 125) 

O < q < B ,  (26) 

q = O ,  and 1 - Z = - M  or m - Z = - M ,  (27) 

or if q = & ,  and k =  -M or k - m + l =  - M ,  (28) 

Hence, using (24), 4 -+ 0 as z + 0 (that is, as l /w -+ 1 - ) if 

and q5 is bounded if q = 0 or q = 8. For the bounded solutions 4 -+ 0 as z -+ 0 if 

where M is a positive integer or zero. The conditions q = 0 and q = Q are both 
equivalent to &, = 0 as can be seen from (17). 

Equations (27) and (28) are equivalent to the condition 

k = p + q + & J ( - R , ) =  -M,  (29) 
provided that both the positive and negative values in the expressions (16) and 
(17) for p and q are considered. 

The condition (26) is satisfied when 

0 < Q1 < a. (30) 
Case 2. d$/dz = 0 and 4 is bounded and non-zero at z = 0. In  case 1 we showed 

that $ can only be bounded and non-zero if q = 0 or -$ and so only these cases need 
be considered here. 

Now 
w-kF(k,k-m+l;k-Z+l;  l/w) = w1-*(w-l)m-k4F(l-Z,m-Z;k-Z+l; l/w) 
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(Abramowitz & Stegun 1965, equation 15.5.7)) and so q5 may be written 

$ = D,wP*-mF(l-l,m-l;k-l+l; l / w ) ,  

and dF 
= (:) (p+l-m)$+D,wp+l-m- dw ' 

Now d$ldz is found by multiplying d$ldw by dwldz = 2wg(w - l )$ ;  since $ is 
bounded the product of the first term on the right-hand side of (31) wit,h dwldx 
tends to zero as w + 1 - (that is as z -+ 0) .  Hence d$/dz tends to zero as z -+ 0 if 
W P + ~ - ~ + B ( W  - 1 ) i  dFldw -+ 0 as w -+ 1 - . Now 

WP+l--m+lt ( - l )*(d/dw) F (1  -1, m - I ;  k - 1 + 1 ;  l lw) 

(see Abramowitz & Stegun 1965, equation 15.2.1; k- 1 + 1 = 1 + .J( -El) + 0) 
and the right-hand side of (32) tends to 

as w -+ 1 - , as is easily shown by using (24). Hence d$/dz -+ 0 as z + w, if 1 = 1, 
m = 1, 2 - I = - M or m - 1 + 1 = - M ,  and by substitution of the expressions 
(19) and (20) it is easily seen that these conditions are included in the set of 
conditions (29) wheiip and q take all possible values. 

Hence, in general, we have the continuum solution (see also Case 1960)) 
continuous at z = 0, and tending to zero as z -+ & 00, 

4 = D,(sechz)d(-Rl)(tanh~)2*F(p+q+Q,/( -El), [Q-p] +q++d( -3,); sech2z), 
(33) 

with 0 < q < 4 (and therefore 0 < &, 6 a), or the solutions with Q = 0 or 4 (and 
therefore Q, = 0)  and p + q + &A( - R,) = - M ,  where M is a positive integer or 
zero. The latter solution is that which corresponds to the degenerate form of the 
solution of the hypergeometric equation, when the series F terminates after 
M +  1 terms. The solutions $ may in general be expressed in simple analytical 
terms when F terminates and, for illustration, we shall take examples corre- 
sponding to the degenerate form of the solution and impose the condition (29). 
These solutions will form a family belonging to  the continuum solution and, for 
terms of reference, we shall call them the degenerate solutions. In some particular 
examples it will be found that the degenerate solutions form all, or part of, a 
stability boundary. The other solutions will be of use in the description of general 
disturbances to the flow. It will usually be possible to satisfy (29) for only a few 
values of M .  

3.2. Examples: h(z)  given By (14) 
Some examples are listed below. These are constructed by choosing expressions 
for N 2  (or for U - c )  and finding the corresponding forms of ( U  - c) (or iV), when 
h(x) is given by ( 3 )  and (14). The constant D, has been set equal to unity. 
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Example 1. N 2  = JOsech2nz, U - c  = sechnztanhz; n >, 0, Jo >, 0. Here 

p+ = $ [ 1 + ( 2 n + 3 ) ]  and q* = t [1+ .J (1 -4Jo) ] .  

Solutions of (29)  are possible only if M = 0, p = -+n(n+ l ) ,  

a2 U2 and Jo = -- ( 1  + 2n-  a2) q = *- ~ ~ _ _  
2( 1 + 2n)  ( 1  + 2n)2 

(the eigenvalue equation), with 0 < a2 < 1 + 2n. The neutral eigensolution (the 
degenerate solution) is q5 = cosh-(l+"z I sinh z I[l-@P/(1+2n)l. 

The continuum solution is possible if 0 < J,, 6 $. 

n = 1 we have the solution found by Drazin & Howard (1966, p. 76).  
When n = 0 the solution found by Drazin (1958) is recovered, whilst when 

Example 2. N 2  = J,sech2(1+n)z, U - c  = sechnztanhz; n > -+, Jo 2 0. Here 

and p*, q* are given as in example 1. 
Solutions of (29 )  are possible only if M = 0, p = - +(n + 1 )  and 

q = &[1+n-.J(a2+n2)] ,  

and J, = [d(a2 + n2) - n] [1+ n - 1/(a2 + n2)] 

(the eigenvalue equation), with 0 < a < 1. The neutral eigensolution (the 
degenerate solution) is 

q5 = Cosh-tl+n) x I sinh I #1+n-d(aa+na)l. 

The continuum solution is possible if 0 < J ,  < 8. When n = 0 we have Holmboe's 
(1962) solution. 

Example 3. N2  = Jo+ J I  tanhaz, U - c = sinhx; Jo must be non-negative to  
satisfy the condition N 2  > 0 at z = 0. Here 

J1 +--1-a2 JO h(x) = __ cosh2 z sinh2 x 

and p* = k J (1+4JI ) ] ,  q* = & [ I f  J (1 -4JJJ  

Equation (29 )  may be satisfied if 

JO = %(I  - [2 + 4N - J( 1 + 4 4 )  + 2J( 1 + a2)I2}, 

where the modulus of the terms in the square bracket must be less than or equal 
to unity. It follows that, for any degenerate solution to be possible, 

J1 2 2 ( 2 M + l ) ( M + l )  ( M  2 0). 

For the continuum solution, 0 < 4. 
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For example, if J1 = 6, M must be zero, and the degenerate solution is 

J,= [.J(1+a2)-1][2-.J(1+a2)] (43 > a 3 O ) ,  (34) 

and q5 = sech2 z I sinh z 1[2--\/(1+62)1. 

Using the techniques described by Howard (1963) i t  is found that, for c, = 0, 

- l0iy cot [n(y - l)]  B(+ - y ,  y )  (ac/aJ), = 
B(2 - 7 , ~  + Q) ( 1 0 ~ ~  + 97 - 3) (3 - 27) 

on the neutral curve (34), where y = J(l +a2) and B is the beta function. The 
expression (ac/aJ) ,  is always imaginary and negative on the neutral curve and 
so (34) is a stability boundary with instability for J < J,, C, = 0. This result has 
been confirmed by numerical calculations of Mr Philip Hazel at  Cambridge, who 
has also considered the effects of boundaries at finite z. This is an example of a 
flow which, if unstratified, is stable by Pjrartoft’s (1950) criterion, but which is 
destabilized by the addition of a stable density stratification. Another well- 
known example is that with a three-layer density structure and U = 2, which 
was found and explained by Taylor (1931). In  that case the instability was 
explained as being due to a resonance between a wave moving backwards relative 
to the basic flow at the upper interface and a wave moving forward relative to 
the basic flow at the lower interface, when the absolute speed of the waves was 
approximately the same. In this case no such simple explanation is possible, 
although it seems likely that a similar mechanism causes instability. 

If now J1 = 20, there are two degenerate solutions. 

For M = 0, J, = [2/(1+a2)-3][4-~(1+a2)] (15 2 a2 2 8 ) ,  

and 

whilst, for M = 1, 

q5 = c ~ s h - ~  z 1 sinhz 14-d(1+a2); 

Jo = [2  - .J( 1 +a2)] [J( 1 + a2) - 11 (3 2 a 2  2 O ) ,  

There are many other solutions which may be constructed as particular cases. 
These include the profile 

N 2  = J, (1 - r + 3r tanhzz) sech2 z, 

examined by Miles (1963), which itself includes as special cases the solutions of 
Holmboe (T = 0) and Garcia ( r  = l), and some jet-type so1utions.j-j, 

U = tanh z, 

For example U - c  = sech2 z ,  N 2  = J3 sech4 Z ;  this has the (degenerate) neutral 
eigensolutions q5 = tanh z secha z, Jo = 3 + u2, and 4 = sech2 Z ,  Jo = u2. These do not 
appear to be stability boundaries. 

2 Miles (1967) has also used a transformation to hypergeometric form for tho solution 
of a problem in which N a  = Jo e-=, U = 1 - e+. 
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3.3. Trigonometric functions 
Equation (10) is satisfied when g = cos2z if A = - 1, B = 4, and ( 1 2 )  if C = - 2 ,  
and h then has the form 

(35 )  h(z) = - - - + Q 2 + R 2 ,  cos2z sin2z 

where P2 = 2p(1-2p) ,  Q2 = Zq(l-2g) and R2 = 4[(p+4)2-fCI]. (36) 

p2 

If we solve as before, we find the solution 

#I = El (cos z)2P(sinz)2qF(k, 1; m; C O S ~ Z )  

+ E , ( c ~ s z ) ~ - ~ ~ ( s i n z ) ~ ~ F ( k - m +  1,1-m+ 1 ;  2-m;cos2z) ,  

where, to ensure the boundary condition q5 -+ 0 as cos z -+ 0, the constant El = 0, 
if p < 0, and the constant E ,  = 0, if p >, 4. The function q5 tends t o  zero as 
cos2z-+ 1 - , if 0 < Q2 < &, and is continuous if Q2 = 0 and p + q 5 a,/R2 = - M ,  
where M is a positive integer or zero. We shall define the degenerate solutions 
to be solutions in which 

and take special cases as before. 

137) p + + * - t , / R * =  - M ,  

3.4. Examples: h(x) given. by (35 )  
Example 1 .  N 2  = J,,, U - c  = sinz; J, 2 0. Here h(z):= (Jo/sin2z)+ 1-a2 and 

Equation (37) can only be satisfied for M = 0 and with 
so p k  = 0 or t and q* = t [ 1 5 ,/( 1 - 4J,)]. 

J , , = , / ( l - a 2 ) + a 2 - 1  (a2< l ) ,  (38) 

and the degenerate eigensolution is 

4 = I sinz I d(*-a*), 

and this is a solution found by Drazin & Howard (1966, equation 5.36 i). The 
second solution (equation 5.36 ii) found by Drazin & Howard is satisfied only 
by negative J,, and their third solution (equation 5.36 iii) has the correct eigen- 
solution (this is not given by the present theory as the solution is not expressible 
in the form we have assumed) but the incorrect eigenvalue. The solution should 
be 

Mr Hazel has examined the stability of the flow in this case with boundaries at 
z = - T ,  rr, using a numerical technique, and has found the flow to be unstable 
for 0 < J, < d(1 -a2) + a2- 1 ,  0 < a < $43 ,  and stable elsewhere. The neutral 
curve (29) is thus a stability boundary over only that part of its path for which 
0 < a < +J3.  The instability for 0 < a < 443 with J, = 0 was discovered by 
Tollmien (1935). 

of (2) is R ,  = f, Q3 d &, and # = lcos (z/2)lt*'d(*-&a) Isin (2/2)14'd(*-Qz). 
t If h ( z )  = (Q3/sinaz) + 11, it may easily be shown by substitution that a solution 
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Example 2. N2 = J, C O S ~ X ,  U - c  = sinx; J, 2 0. Here 

h(z) = J,/sin2 z + 1 - a2 - J, 

and so p* = 0 or Q and q* = $[l& ,/(1-4J,)]. Equation (37) can only be 
satisfied for M = 0 and with J,, = a2( 1 - a2), a2 < 1, and the degenerate eigen- 
solution is 9 = Isinzl(l-aa). (As in example 1 a second neutral eigensolution 
exists; see footnote.) 

Example 3. N 2  = J,sin2z, U - c  = sinx; J, 2 0. Here h(z) = J-a2+ 1 and 
the solution with boundaries at  z = zl, z2 is 

1 
n2n2 where J, = a2+ ~- 

(22 - z J 2  
and n is an integer. 

In  this case Q2 = 0 and the continuum solution does not exist. 

4. Final remarks 
We have shown that when the expression 

which appears in the Taylor-Goldstein equation, (l), takes certain forms (which 
are given in general by (13), where g is defined by (lo)), the solutions 9 belong 
to continua which may be expressed in analytical forms. Two forms of h(z), (14) 
and (35), have been considered in some detail and provide examples of neutral 
eigensolutions, many of which have not previously been noticed. 

The possible solutions of (10) have not been exhausted by the two particular 
forms of solution chosen above, but these serve to illustrate the method of 
finding solutions of (1) .  

If the minimum Richardson number is greater than f, the flow is known to 
be stable (Miles 1961). No cases have been found here in which the criteria for 
instability is that the minimum Richardson number in the flow is less than a 
positive number less than f, but an example has been found which shows that 
stability of a stratified flow is not ensuredLby the stability of an unstratified flow 
with the same velocity distribution. 

Although transformation into the hypergeometric differential equation serves 
to provide a good example, any transformation of the Taylor-Goldstein equation 
into a form of which solutions are known will, of course, generate a further class 
of solutions. 

I am grateful to Mr Philip Hazel for letting me see his unpublished results. 
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